IHL029 - ITE College East Sustainable Cities Challenge HOUGANG MALL

Table of Content

- Introduction
- Energy Efficiency
- Water Efficiency
- Vertical & Roof Top Greenery
- Waste Management
- Summary & Conclusion

Introduction

ltem	Direct emissions from source	Input	Conversion Factors	Carbon Equivalent (kgCO ₂ e)
Electricity from Supplier	Natural Gas Plant	6372900 kWh	0.4057 kg CO ₂ /kWh	2,585,486
Water	SP Bill	69360 <u>kL</u>	1.3 kg CO ₂ /kL	90,168
Waste	SP Bill	473190 kg	0.5614 kg CO ₂ / kg waste	265,660
Total				2,941,313

"Just keep moving forward."

Introduction

There are many benefits to upgrade shopping mall to a sustainable shopping mall. Some of the numerous benefits includes the following:

1) Environmental Conservation
2) Cost Savings
3) Enhanced Brand Image
4) Improved Air Quality
5) Reduced Carbon Footprint
6) Attraction of Tenants and Retailers
7) Community Engagement
8) Resilience to Climate Change
9) Regulatory Compliance
10) Long-Term Value

"Just keep moving forward."

1.1 Chiller Plant Efficiency

To align with mandatory minimum energy efficiency requirement, Hougang Mall shall require achieving 60% energy savings to qualify for GM SLE rating certification.

	Benchmark for SLE	Propose
Total System Efficiency (TSE)	0.9kW/RT	0.75kW/
Chiller Plant System Efficiency	0.6kW/RT	0.6kW/R

d for Hougang Mall RT

1.2 Air Distribution

1.2 Air Distribution

The target air distribution efficiency = 0.15 kW/RT. This can be achieved by replacing the existing air handling units (AHU) fans to EC (Electronic Commutation)/DC (Direct Current) fan.

	Benchmark	for
	SLE	
Total System Efficiency (TSE)	0.9kW/RT	
Chiller Plant System Efficiency	0.6kW/RT	
Air Distribution System Efficiency	0.25kW/RT	

Proposed for Hougang Mall 0.75kW/RT 0.6kW/RT 0.15kW/RT

1.3 Higher Set-Point Temperature

To further improve energy efficiency, the air-conditioning temperature setpoint can be increased to 26°C at public or common areas. Every 1°C raised in set-point temperature, cooling load energy reduction between 8 to 9 % can be expected.

1.4 Lighting Systems

Another area for energy efficiency improvement is to further reduce the lighting power density (LPD, W/m²) by adopting high efficacy (Lumen/W) light fittings.

1.5 Energy Generation

1.5.1 Solar Panel

Assume:

- 1. Solar panel installation area is around 500m².
- 2. Sunshine hours 100 hours/month.
- 3. One piece of solar panel area is $1m^2$

Achievement: Solar panel will generate 25000kWh per month

1.5 Energy Generation 1.5.2 Dyno-hump

Assume 0.1 million car enter/exit Hougang mall every month.

1.5 Energy Generation

1.5.2 Dyno-hump

1.5 Energy Generation 1.5.2 Dyno-hump

Dyno-hump design

Working principle

1.5 Energy Generation1.5.2 Dyno-hump

Achievement:

One-month electricity generation is 0.56kW x (3/3600)hour x (0.1x10⁶) x 30 = 1400kWh.

1.5 Energy Generation

1.5.3 Piezoelectric generation

PZT (lead zircoante / titanate)

1.5 Energy Generation

1.5.3 Piezoelectric generation

Experiment: one person walking 57 steps can generate 9.26x10⁻⁵ J = 2.57x10⁻¹¹kWh

Assume:

one month there are 1 million shopper traffic and each person walks about 1×10^6 steps in the mall.

Achievement:

Generate energy 2.57×10^{-11} kWh x 10^6 x 10^6 / 57 = 0.45 kWh per month

1.6 Double-slope hollow glazed roof

Propose: Using double-slope hollow glazed roof to replace the existing glass roof

Assume: degree.

Achievement: The temperature of the inner surface decreases by about 3.66% which is approximate 1 degree. In turns saving 8% of energy consumption for aircon.

The glass roof area is approximately 30% of the total roof area.

The temperature of the mall is set at 26

2 Water Efficiency

2.1 Water tap maintenance

Achievement:

10L water saving per month

2 Water Efficiency

2.2 Recycling of grey water

Proposal:

Collect the grey water such as rain water and water from washing hand or vegetable to flush toilet or water the plant proposed for the roof top,

Achievement:

it is estimated to save 30% of water usage which is 3468kL (11560kL x 30%).

3 Vertical and Roof Top Greenery

3.1 Vertical wall greenery

Assumption:

The façade area suitable to build green wall is about 8% of floor area.

Achievement:

Save 1.92% of the total amount of electricity used

Green Wall

3 Vertical and Roof Top Greenery

3.2 Roof top greenery

Proposal:

Planting vegetables on the roof.

4 Waste Management

4.1.1 Animal Feed

Proposal:

4 Waste Management 4.1.2 Anaerobic Digestion

Proposal:

compress and dry food wastes using induction heating

4 Waste Management 4.1.1 and 4.1.2

Assumption:

80% is food waste

Achievement:

Cutting food waste by roughly 80% which is about 50474 kg.

4 Waste Management

4.2 Waste classification and recycling

Assumption:

Achievement: Cutting non-food waste by roughly 50% which is about 7887 kg.

20% is food waste

Proposed Ideas		Generation & Deduction		
Aircon	1.1 – 1.3, 1.6,	The energy efficiency can		
	3.1, 3.2	+ 1.92% = 77.92%		
Lighting	1.4	5.5%		
Electricity	1.5	250000kWh + 1400kWh +		
generation		(per month)		
Total		83.42%		
deduction				

- a. The overall electricity consumption over a six-month period will be approximately 6372900 kWh x (100% - 83.42%) = 1056627 kWh.
- b. The amount of electricity generated over a six-month period is 251400.45kWh x 6 = 1508403kWh.

be reduced about 68% + 8%

- 0.45kWh = 251400.45kWh

5 Summary

5.2 Water Efficiency

Proposed Ideas	Deduction
2.1	0.01kL
2.2	3468kL
Total	3468.01kL

The total water use over a six-month period will be approximately 48552kL.

5 Summary

5.3 Waste Management

Proposed Ideas	Deduction from t
4.1	50474kg
4.2	7887kg
Total	58361kg

The total amount of waste burned over a six-month period will be approximately 123024 kg.

he proposed idea

5 Summary

5.4 Carbon Equivalent after implementation of our proposal

Item	Input	Conversion Factors		Carbon Equivalent (kgCO ₂ e)		
				Implemented	Before	
Electricity from Supplier	1693917kWh	0.4057 CO ₂ /kWh	kg	687222	2585486	
Electricity from solar / generator	1508403kWh	0.4057 CO ₂ /kWh	kg			
Water	48552 <u>kL</u>	1.3 kg CO ₂ /kL		63118	90168	
Waste	123024 kg	0.5614 kg CO ₂ / waste	kg	69068	265660	
Total				819408	2941313	

That carbon equivalent can reduce 72%.

Thank You

Annex: Carbon footprint calculator

ltem	Remarks	Input		<u>Coversion</u> Factors		Carbon Equivalent (kgCO2e)
		Quantity	Unit	Quantity	Unit	
Scope 2:	Indirect Emissions from purchased energy					428,674
Electricity from Supplier - Natural Gas Plant	Natural Gas Plant	1056627	KWh	0.4057	kg CO2/kWh	428,674
Electricity from solar/ Carbon neutral sources	Zero carbon	1508403	kWh	0	kg CO2/kWh	0
Scope 3:	Indirect Emissions from supply chain (Not under Company control)					132,186
Water Consumption- Potable Water	SP Bill	48552	m3	1.3	kg CO2/m3	63,118
Waste Disposal - General Waste	SP Bill	123024	kg	0.561422507	kg CO2 / kg waste	69,068

6 References

- 1. SLEB, 2024, https://www.sleb.sg/Technologies/TechnologiesDetails/424
- etc, Building and Environment 2. Michael G https://acrobat.adobe.com/id/urn:aaid:sc:AP:abf988aa-89fe-488b-b3d1-c2df68c1b576
- 3. Qianjun Mao, Meng Yang, 2020, Applied Thermal Engineering, Volume 180, 5 November 2020, 115832 "Experimental and numerical investigation on heat transfer of solar double-slope performance а https://www.sciencedirect.com/science/article/abs/pii/S1359431120333147
- 4. REVOZ dryer, https://www.singnergy.com/products/revoz-dryer
- 5. https://ncalculators.com/electrical/solar-panel-calculator.htm
- 6. Mohamad Ramadana,*, Mahmoud Khaleda,b, Hicham El Hagea: Using speed bump for power generation – Experimental study. Energy Procedia 75 (2015) 867 – 872, The 7th International Conference on Applied Energy – ICAE2015.
- 7. https://www.youtube.com/watch?v=ZWaCnODSBfM
- 8. https://wetransfer.com/downloads/c667549b592ea2a88a3198ed861b50a6202406280 15054/e5d60a

243 (2023)110674

hollow glazed roof"

